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Abstract
A critical variable of a satisfiable CNF formula is a variable that has the same value in all satisfying
assignments. Using a simple case distinction on the fraction of critical variables of a CNF formula,
we improve the running time for 3-SAT from O(1.32216n) by Rolf [10] to O(1.32153n). Using a
different approach, Iwama et al. [5] very recently achieved a running time of O(1.32113n). Our
method nicely combines with theirs, yielding the currently fastest known algorithm with running
time O(1.32065n). We also improve the bound for 4-SAT from O(1.47390n) [6] to O(1.46928n),
where O(1.46981n) can be obtained using the methods of [6] and [10].
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1 Introduction

The ideas behind the most successful algorithms for k-SAT are surprisingly simple. In 1999,
Paturi, Pudlák, and Zane [9] proposed the following algorithm. Given a k-CNF formula F ,
we choose a variable x uniformly at random from the n variables in F , choose a truth value
b ∈ {0, 1}, and set x to b, thereby replacing F by F [x 7→b], and continue with F [x 7→b]. The
value b is chosen as follows: If the formula contains the unit clause (x), we choose b = 1. If it
contains (x̄), we choose b = 0. In these two cases, we say x was forced. If it contains neither,
we choose b randomly and say x was guessed. Finally, if the formula contains both (x) and
(x̄), we can give up, since the formula is unsatisfiable. This algorithm is usually called PPZ
after its three inventors.

Intuitively, if F is “strongly constrained”, then the algorithm encounters many unit
clauses, hence it needs to guess significantly fewer than n variables. On the other hand, if
F is only “weakly constrained”, it has multiple satisfying assignments, making it easier to
find one. Paturi, Pudlák and Zane [9] make this intuition precise and show that PPZ finds
a satisfying assignment for a k-CNF formula with probability at least 2−(1−1/k)n, provided
there exists one.

A couple of years later, Paturi, Pudlák, Saks, and Zane [8] came up with a simple but
powerful idea. In a preprocessing step, they apply a restricted version of resolution. This
increases the number of unit clauses the algorithm encounters and therefore increases its
success probability. This gives an algorithm called PPSZ. If F has a unique satisfying
assignment, its success probability is quite good (for 3-SAT, it is Ω(1.308−n)), and the
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analysis is highly elegant. The case of multiple satisfying assignments appears to be much
more difficult and has been the subject of several papers so far. Iwama and Tamaki [6]
made a major step forward when they observed that while the success probability of PPSZ
deteriorates as the number of satisfying assignments increases, that of Schöning’s random
walk algorithm [11] improves. They quantified this tradeoff and obtained an algorithm with
a success probability of Ω(1.32373−n)1. We denote this combined algorithm, consisting of
one run of PPSZ and one run of Schöning’s random walk algorithm, by Comb.

The PPSZ paper. There are two versions of [8], which we call the old version and the
new version. For unique k-SAT, both are the same, but for general k-SAT, the old version
of [8] gives a more complicated analysis. The old version gives a better bound for 3-SAT and
the new version gives a better bound for 4-SAT.

Only the new version is published, but the old version is still available at the Citeseer
cache2. However, we have found some minor errors in that version. There is also a conference
version [7] stating the results of the old version of [8], but without most proofs. Rolf [10]
improved the analysis of the old version to get a bound of Ω(1.32216n). However [10] does not
consider 4-SAT. We use the ideas of [10] for our improvement of 4-SAT. In Timon Hertli’s
master thesis [2], the old version of [8] with the result of [10] is presented in a self-contained
way. We will reference that thesis for detailed proofs.

1.1 Our Contribution
Let F be a satisfiable CNF formula over n variables and x be a variable therein. We call x
critical if all satisfying assignments of F agree on x. Equivalently, x is critical if exactly one
of the formulas F [x7→1] and F [x7→0] is satisfiable. We denote by c(F ) the fraction of critical
variables, i.e., the number of critical variables divided by n; if n = 0, we define c(F ) := 1.

Our contribution consists of two statements: Theorem 1 shows that for our purposes we
only need to consider formulas with many critical variables. Point 3 of Lemma 9 then implies
that the success probability of PPSZ increases if F has many critical variables. This is
obtained by slightly modifying the existing analysis of [8] and [10] by taking critical variables
into account. However, Lemma 9 is somewhat technical and we need to embed it into a
review of the existing analysis. Theorem 1 is very simple, so we state it here:

I Theorem 1. Let p, q, c∗ ∈ [0, 1] and a, b ≥ 1 such that q
b =

(
1− c∗

2

)
=: r. Suppose

algorithm A runs in time an2o(n) and for every satisfiable (≤ k)-CNF formula F with
c(F ) ≥ c∗ finds a satisfying assignment with probability at least pn

( 1
2
)o(n). Then there

exists an algrotihm A′ that runs in time max{a, b}n2o(n) and for every satisfiable (≤ k)-CNF
formula finds a satisfying assignment with probability at least min{p, q}n

( 1
2
)o(n).

Obviously we can turn A′ into a algorithm that finds a satisfying assignment in expected
time

(
max{a,b}
min{p,q}

)n
2o(n).

Proof. By guessing j variables we mean fixing in F j variables chosen uniformly at random
to values chosen uniformly at random, obtaining the formula F ′ over at most n− j variables.
A′ for each j ∈ {0, . . . , n} repeats the following bj times: Guess j variables and then run A
on F ′; the running time bound is trivial. To bound the probability, we first claim that there

1 Using the new version of [8] immediately gives the bound Ω(1.32267−n), as stated in [10].
2 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1134

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1134
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exists a j such that aj ≥ rj

n+1 where aj is the probability that after guessing j variables F ′
is satisfiable and c(F ′) ≥ c∗. Suppose this is not the case: Let bj be the probability that
after guessing j variables F ′ is satisfiable and c(F ′) < c∗. Clearly a0 + b0 = 1 since F is
satisfiable, and ai+1 + bi+1 ≥ bi · r, as guessing one variable preserves satisfiability with
probability at least

(
1− c∗

2

)
= r. By the assumption, bi · r ≥

(
ai + bi − ri

n+1

)
· r; from this

it is easy to show that an + bn ≥ rn−n rn

n+1 = rn

n+1 . If j = n, we have c(F ′) = 1 by definition;
hence bn = 0 and an ≥ rn

n+1 , a contradiction. Now let j∗ be the j given by the claim; we
repeat bj∗ times an algorithm that has success probability at least rj

∗

n+1p
n−j∗ ( 1

2
)o(n); as

r · b = q this gives by a routine argument an algorithm with success probability at least
pn−j

∗
qj

∗ ( 1
2
)o(n). J

We improve the analysis for PPSZ for formulas with many critical variables. In com-
bination with Theorem 1, this gives a success probability of Ω(1.32153−n) for 3-SAT and
Ω(1.46928−n) for 4-SAT. Very recently, Iwama, Seto, Takai, and Tamaki [5] showed how
to combine an improved version of Schöning’s algorithm [4, 1] with PPSZ and achieved
expected running time of O(1.32113n). We combine our improvement with theirs to obtain
a bound of O(1.32065n). Due to page limitations, we were not able to use the full power
of [5] in this version. We show a bound O(1.321n) that still improves on the bound of [5].
For a proof of the better bound, see the full version of this paper [3]. The only change is we
use a better result of [5] which has different parameters; however these are not not stated
explicitly so we needed to derive and prove them.

We analyze the algorithm Comb(F ), where F is a CNF formula. Comb consists essentially
of a call to PPSZ [8] and to Schoening [11]. In [6] it was shown that Comb has a better
success probability than what the analysis of PPSZ and Schoening gives. Let ISTT be
the algorithm of [5] that improves Comb.

I Theorem 2. There exists an algorithm that for every satisfiable 3-CNF formula finds a
satisfying assignment with probability Ω(1.32153−n) and runs in subexponential time.

I Theorem 3. There exists an algorithm that for every satisfiable 3-CNF formula finds a
satisfying assignment with expected running time O(1.32065−n).

Due to page limitations, we prove the following weaker theorem instead. For the proof of the
previous theorem, see the full version of this paper [3].

I Theorem 4. There exists an algorithm that for every satisfiable 3-CNF formula finds a
satisfying assignment with expected running time O(1.321−n).

I Theorem 5. There exists an algorithm that for every satisfiable 3-CNF formula finds a
satisfying assignment with probability Ω(1.46928−n) and runs in subexponential time.

This is already very close to unique 4-SAT, which has a success probability of Ω(1.46899−n).
The benefit of Theorem 1 is that when proving Theorems 2 and 5, we only need to consider
formulas with many critical variables. For example, to prove Theorem 2, we choose c∗ such
that 1− c∗/2 = 1/1.32153, i.e., c∗ ≈ 0.4866. Then we have to bound from below the success
probability of Comb for 3-CNF formulas F with c(F ) ≥ c∗.

1.2 Notation
We use the notational framework introduced in [12]. We assume an infinite supply of
propositional variables. A literal u is a variable x or a complemented variable x̄. A finite set
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C of literals over pairwise distinct variables is called a clause and a finite set of clauses is a
formula in CNF (Conjunctive Normal Form). We say that a variable x occurs in a clause C
if either x or x̄ are contained in it and that x occurs in the formula F if there is any clause
where it occurs. We write vbl(C) or vbl(F ) to denote the set of variables that occur in C or
in F , respectively. A clause containing exactly one literal is called a unit clause. We say that
F is a (≤ k)-CNF formula if every clause has size at most k. Let such an F be given and
write V := vbl(F ) and n := |V |.

A assignment is a function α : V → {0, 1} which assigns a Boolean value to each variable.
A literal u = x (or u = x̄) is satisfied by α if α(x) = 1 (or α(x) = 0). A clause is satisfied by
α if it contains a satisfied literal and a formula is satisfied by α if all of its clauses are. A
formula is satisfiable if there exists a satisfying truth assignment to its variables.

For an assignment α on V and a set W ⊆ V , we denote by α⊕W the assignment that
corresponds to α on variables of V \W and is flipped on variables of W .

Given a CNF formula F , we denote by sat(F ) the set of assignments that satisfy F .
Formulas can be manipulated by permanently assigning values to variables. If F is a

given CNF formula and x ∈ vbl(F ) then assigning x 7→ 1 satisfies all clauses containing x
(irrespective of what values the other variables in those closes are possibly assigned later)
whilst it truncates all clauses containing x̄ to their remaining literals.

We will write F [x 7→1] (and analogously F [x7→0]) to denote the formula arising from doing
just this.

We say that two clauses C1 and C2 conflict on a variable x if one of them contains x and
the other x. We call C1 and C2 a resolvable pair if they conflict in exactly one variable x,
and we define their resolvent by R(C1, C2) := (C1 ∪ C2) \ {x, x}. It is easy to see that if F
contains a resolvable pair C1, C2, then sat(F ) = sat(F ∪ {R(C1, C2)}). A resolvable pair C1,
C2 is s-bounded if |C1| ≤ s, |C2| ≤ s, and |R(C1, C2)| ≤ s.

By Resolve(F, s), we denote the set of clauses C that have an s-bounded resolution
deduction from F . By a straightforward algorithm, we can compute Resolve(F, s) in time
O
(
n3spoly (n)

)
[8].

By choosing an element u.a.r. from a finite set, we mean choosing it uniformly at random.
By choosing an element u.a.r. from an closed real interval, we mean choosing it according to
the continuous uniform distribution over this interval. Unless otherwise stated, all random
choices are mutually independent.

We denote by log the logarithm to the base 2. For the logarithm to the base e, we write
ln. We define 0 log 0 := 0.

2 Proof of the Main Theorems

In the following let k ≥ 3 be a fixed integer. Let F be a satisfiable (≤ k)-CNF formula,
V := vbl(F ) and n := |V |. We first give the concepts from [8] needed to understand Lemma 9.
Then we state the lemma and use it to improve the bounds on the success probability of
Comb and ISTT given sufficiently many critical variables. In Section 3, we prove Lemma 9
and also consider 4-SAT. Most concepts used in the proof are from [8, 10]. Our contribution
is to exploit what these concepts yield for critical variables.

Subcubes. For D ⊆ V and α ∈ {0, 1}V , the set B(D,α) := {β ∈ {0, 1}V | α(x) =
β(x) ∀x ∈ D} is called a subcube. The variables in D are called defining variables and those
in V \D nondefining variables. The subcube B(D,β) has dimension |V \D|. For example,
if V = {x1, x2, x3}, D = {x1, x3} and α = (1, 0, 0), then B(D,α) contains exactly the two
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Algorithm 1 PPSZ(CNF formula F , assignment β, permutation π)
Let α be a partial assignment over vbl(F ), initially the empty assignment.
G← Resolve(F, log(|vbl(F )|))
for all x ∈ vbl(G), according to π do

if {x} ∈ G then
α(x)← 1

else if {x} ∈ G then
α(x)← 0

else
α(x)← β(x)

end if
G← G[x7→α(x)]

end for
return α

Algorithm 2 PPSZ(CNF formula F )
{this algorithm is used for 4-SAT}
Choose β(x) u.a.r. from all assignments on vbl(F )
Choose π u.a.r. from all permutations of vbl(F )
return PPSZ(F, β, π)

assignments (1, 0, 0) and (1, 1, 0). Given a nonempty set S ⊆ {0, 1}V , there is a partition

{0, 1}V =
⋃
α∈S

Bα

where the Bα are pairwise disjoint subcubes, and α ∈ Bα for all α ∈ S. See [8] for a proof.
For the rest of the paper, we fix such a partition for S being the set of satisfying assignments.
To estimate the success probability of Comb, consider the assignment β that Comb chooses
uniformly at random from {0, 1}V .

Pr[Comb(F ) ∈ sat(F )] =
∑

α∈sat(F )

Pr[Comb(F ) ∈ sat(F )| β ∈ Bα] · Pr[β ∈ Bα]

≥ min
α∈sat(F )

Pr[Comb(F ) ∈ sat(F ) | β ∈ Bα].

Hence instead of analyzing Comb for an assignment β sampled uniformly at random from
all assignments, we fix α ∈ sat(F ) arbitrarily and we think of β as being sampled from the
subcube Bα. Let Nα be the set of non-defining variables of this cube, and Dα the set of
defining variables. Intuitively, if Bα has small dimension, then β is likely to be close to α,
thus Schoening has a better success probability:

I Lemma 6 ([6]). Pr[Schoening(F, β) ∈ sat(F ) | β ∈ Bα] ≥ (2− 2/k)−|Nα|.

Placements. As a next step, we analyze PPSZ(F, β, π) with β chosen uniformly at
random from Bα and the permutation also chosen from some subset of permutations. A
placement of the variables V is a function σ : V → [0, 1], and a uniform random placement
is defined by chosing σ(x) uniformly at random from [0, 1] independently for each x ∈ V .
With probability 1, a uniform random placement is injective and gives rise to a uniformly
distributed permutation via the natural ordering < on [0, 1]. For the rest of the paper, we will
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Algorithm 3 Schoening(CNF formula F, assignment β)
for 3|vbl(F )| steps do

if β satisfies F then
return β

end if
Select an arbitrary C ∈ F not satisfied by β
Select a variable x u.a.r. from vbl(C) and flip x in β

end for
return β

Algorithm 4 Comb(CNF formula F )
{this algorithm is used for 3-SAT}
Choose β(x) u.a.r. from all assignments on vbl(F )
α← PPSZ(F, β)
if α 6∈ sat(F ) then
α← Schoening(F, β)

end if
return α

view π as a placement rather than a permutation. Let Γ be a measurable set of placements.
Then

Pr[PPSZ(F, β, π) ∈ sat(F ) | β ∈ Bα] ≥
Pr[PPSZ(F, β, π) ∈ sat(F ) | β ∈ Bα, π ∈ Γ] · Pr[π ∈ Γ].

The benefit of this is that we can tailor Γ towards our needs, i.e., making the conditional
probability Pr[PPSZ(F, β, π) ∈ sat(F ) | β ∈ Bα, π ∈ Γ] fairly large. This may come at the
cost of making Pr[π ∈ Γ] small.

Forced variables. Suppose the permutation π orders the variables V as (x1, . . . , xn).
Let α be a satisfying assignment of F . Imagine we call PPSZ(F, α, π). The algorithm
applies bounded resolution to F , obtaining G = Resolve(F, log(n)) and sets the variables
x1, . . . , xn step by step to their respective values under α, creating a sequence of formulas
by G = G0, G1, . . . , Gn, where Gi = G

[xi 7→α(xi)]
i−1 for 1 ≤ i ≤ n. Since α is a satisfying

assignment, Gn is the empty formula. We say xi is forced with respect to α and π if Gi−1
contains the unit clause {xi} or {x̄i}. By forced(α, π) we denote the set of variables x that
are forced with respect to α and π. If x is not forced, we say it is guessed. We denote by
guessed(α, π) the set of guessed variables. Note that PPSZ(F, β, π) returns α if and only if
α(x) = β(x) for all x ∈ guessed(α, π). Furthermore, since β is chosen uniformly at random
from Bα, we already have α(x) = β(x) for all x ∈ Dα. Therefore

Pr[PPSZ(F, β, π) ∈ sat(F )] ≥ Pr[PPSZ(F, β, π) = α] (1)

= E
[
2−|Nα∩guessed(α,π)|

]
≥ 2−E[|Nα∩guessed(α,π)|], (2)

where the inequality comes from Jensen’s inequality applied to the convex function t 7→ 2−t.
Note that (2) holds when taking π uniformly at random as well as when sampling it from
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some set Γ. Using linearity of expectation, we see that

E[|Nα ∩ guessed(α, π)|] =
∑
x∈Nα

Pr[x ∈ guessed(α, π)]. (3)

Now if α is the unique satisfying assignment, then Nα = V . For 3-SAT, one central result
of [8] is that

I Lemma 7 ([8]). Let F be a satisfiable 3-CNF formula with a unique satisfying assignment α.
Then for every x ∈ vbl(F ), it holds that Pr[x ∈ guessed(α, π)] ≤ 2 ln(2)− 1 + o(1) < 0.3863.

Combining the lemma with (2) shows that PPSZ on 3-CNF formulas with a unique
satisfying assignment has a success probability of at least 2−(2 ln(2)−1+o(1))n ∈ Ω(1.308−n).
For the case of multiple satisfying assignments, the lemma does not hold anymore.

Critical variables. Let F be a satisfiable CNF formula and x a variable. Recall that we
call x critical if all satisfying assignments of F agree on x. The following observation is not
difficult to show:

I Observation 8. Let F be a satisfiable CNF formula and let VC be the set of critical
variables. Let Bα be the subcube as defined above. For a satisfying assignment α, let Nα be
the set of nondefining variables. Then VC ⊆ Nα.

I Lemma 9. Let F be a satisfiable 3-CNF formula and α be a satisfying assignment.
There is a measurable set Γ ⊆ [0, 1]V of placements such that for β = 0.8022563838 and
γ = 0.6073995502, we have
1. Pr[π ∈ Γ] ≥ 2−β|Dα|−o(n) ≈ 0.57345159|Dα|−o(n),
2. Pr[x ∈ forced(α, π) | π ∈ Γ] ≥ γ − o(1) ≈ 0.6073995502− o(1) for all x ∈ Nα,
3. Pr[x ∈ forced(α, π) | π ∈ Γ] ≥ 2− 2 ln(2)− o(1) ≈ 0.6137056 for all critical x ∈ V .
The important part of the lemma is point 3, namely that critical variables are forced with a
larger probability than non-critical ones.

Proof of Theorem 2. Using Theorem 1, we can assume c(F ) ≥ 0.48659459. Let ∆ :=
|Dα|/|V | = 1− |Nα|/|V | be the fraction of defining variables. Combining (3) with Lemma 9,
we obtain

E[|Nα ∩ guessed(α, π)| | π ∈ Γ] =
∑
x∈Nα

Pr[x ∈ guessed(α, π)]

≤ (2 ln 2− 1)|VC |+ (1− γ)|Nα \ VC |+ o(n)
≤ (2 ln 2− 1)c∗n+ (1− γ)(1−∆− c∗)n+ o(n)
= 0.389532n− 0.3926004498∆n+ o(n).

The expected fraction of nondefining variables we have to guess is thus a little bit larger
than in the case of a unique satisfying assignment, where it is ≈ 0.3863. Together with (2),
we conclude that the success probability of PPSZ is at least

Pr[PPSZ(F, β, π) = α | β ∈ Bα] ≥ Pr[PPSZ(F, β, π) = α | β ∈ Bα, π ∈ Γ] · Pr[π ∈ Γ]
≥ 2−E[|Nα∩guessed(α,π)| | π∈Γ] · Pr[π ∈ Γ]
≥ 2−0.389532n+0.3926004498∆n · 0.57345159∆n · 2−o(n)

≥ 1.3099684−n · 1.328369−∆n · 2−o(n). (4)
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Our bound on the success probability of PPSZ thus deteriorates with the number of defining
variables. A bigger subcube Bα is better for PPSZ. We combine this with the bound for
Schöning’s algorithm from Iwama and Tamaki [6], stated above in Lemma 6

Pr[Schoening(F, β) ∈ sat(F ) | β ∈ Bα] ≥ (2− 2/k)−(1−∆)n. (5)

The combined worst case is with ∆ ≈ 0.0309273, in which case both (4) and (5) evaluate
to Ω(1.32153−n). Therefore for any ∆, at least one of Schoening and PPSZ has a success
probability of Ω(1.32153−n). J

Proof of Theorem 4. Lemma 6 from [5] tells us that there is an algorithm ISTTSch that
improves Schoening such that for all m∗ ∈ [0, 1

3 ] we have, after preprocessing time 6m∗n,

Pr[ISTTSch(F, β) ∈ sat(F ) | β ∈ Bα] ≥ 1.012795m
∗·n · 1.2845745∆n · (3/4)n.

We want to prove that by replacing Schoening with ISTTSch in Comb, we obtain expected
running time of O(1.321n). Setting c∗ := 0.48599 and m∗ := 0.155371873 gives 1− c∗/2 ≥
1/1.321 and 6m∗ ≥ 1.321. With this choice of c∗, we have the following bound for PPSZ
(obtained as in the previous proof, but with a different constant c∗):

Pr[PPSZ(F, β, π) = α | β ∈ Bα] ≥ 1.31−n · 1.3312−∆n · 2−o(n).

The combined worst case is at ∆ ≈ 0.029225 where 1.31−n · 1.3312−∆n > 1.321−n and
1.012795m∗·n · 1.2845745∆n · (3/4)n > 1.321−n, proving that the combined success probability
is Ω(1.321−n) (after preprocessing time O(1.321n)). J

3 Proof of Lemma 9

3.1 Critical Clause Trees

Let G := Resolve(F, log(n)). Note that vbl(F ) = vbl(G) and sat(F ) = sat(G). A critical
clause for x ∈ V w.r.t. α is a clause where α satisfies exactly one literal and this literal
is over x. It can be easily seen that if the output of PPSZ should be α, then exactly the
critical clauses of G are the clauses that might turn into unit clauses. Note that the defining
variables are assumed to be set correctly, so we only need to consider critical clauses for
nondefining variables here.

We now define critical clause trees, a concept that tells us which critical clauses we can
expect in a CNF formula after bounded resolution. Let T be a rooted tree in which every
node is either labeled with a variable from V or is unlabeled. A cut in a rooted tree is a set
of nodes A such that the root is not in A and every path from the root to a leaf contains at
least one node in A. The depth of a node is the distance to the root. For a set A of nodes,
vbl(A) denotes the set of variables occurring as labels in A. We say T is a critical clause tree
for x w.r.t. G and α if the following properties hold:

1. The root is labeled by x.
2. On any path from the root to a leaf, no two nodes have the same label.
3. For any cut A of the tree, there is a critical clause C ∈ G w.r.t. α where the satisfied

literal is over x and every unsatisfied literal is over some variable in vbl(A).
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x

y z

a b c

Figure 1 Example Criti-
cal Clause Tree

It is shown in [8] that we can construct a critical clause tree
for x ∈ Nα as follows: Start with the root labeled x. Now we
can repeatedly extend a leaf node v. Let L be the set of labels
that occur on the path from v to the root. If α ⊕ L does not
satisfy F , then we can extend the tree at that node: There is a
clause C in F (not in G) not satisfied by α⊕L. For each literal
in C that is not satisfied by α, we add a child to v labeled with
the variable of that literal. If there are no such literals, we add
an unlabeled node. As clauses of F have at most k literals, each
node has at most k − 1 children. If the constructed tree has at
most log(n) nodes (as we do log(n)-bounded resolution), then
it is a critical clause tree for x w.r.t. G and α.

We give a simple example: Let

F := {{x, y, z}, {x, y, a}, {z, b, c}, {x, z, c}}.

For the all-one assignment and x, we can get the tree shown in Figure 1 by the de-
scribed procedure. {a, b} is a cut in this tree. We have R({z, b, c}, {x, z, c}) = {x, z, b},
R({x, y, z}, {x, y, a}) = {x, z, a} and R({x, z, b}, {x, z, a}) = {x, a, b}, giving the required
critical clause.

If α is the only satisfying assignment of F , α⊕ L never satisfies F , and we can build a
tree where all leafs are at depth d := b logk log(n))c. We call this a full tree. The important
observation is now that this also works if x is a critical variable, as in that case α⊕ L also
never satisfies F , as x ∈ L.

In the general case, however, the assignment α ⊕ L might satisfy F so that we cannot
extend the tree. However if L consists only of nondefining variables, then we know that
α⊕ L does not satisfy F . Hence we can get a tree where every leaf not at depth d is labeled
by a defining variable. We define the trees Tx we will use in the analysis:

I Definition 10. For x ∈ Nα, construct the critical clause tree for x as follows: If x is a
critical variable, then construct Tx such that all leaves are at depth d, i.e., construct a full
tree. Otherwise, construct Tx such that all leaves not labeled by defining variables are at
depth d.

This means that a tree might just consist of a root where all children are labeled with
defining variables, which essentially nullifies the benefits from resolution. To cope with this,
we have to make defining variables more likely to occur at the beginning. We achieve this by
choosing the set Γ of placements whose existence we claim in Lemma 9 in a way such that
exactly that happens.

I Definition 11. A function H : [0, 1]→ [0, 1] is called a nice distribution function if H is
non-decreasing, uniformly continuous, H(0) = 0, H(1) = 1, H is differentiable except for
finitely many points and H(r) ≥ r.

Compared with [8], we added the requirement H(r) ≥ r. This will mean that defining
variables cannot be less likely to occur at the beginning than nondefining variables. We now
define a random placement where defining variables are placed with distribution function H:

I Definition 12. Let H be a nice distribution function. By πH , we define the random
placement on V s.t. π(x) for x ∈ Nα is u.a.r. ∈ [0, 1], and for x ∈ Dα and r ∈ [0, 1],
Pr(π(x) ≤ r) = H(r).
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Assume that the variables are processed according to some placement π. Consider Tx.
If there is a cut A such that π(y) < π(x) for every y ∈ vbl(A), then x is forced, as the
corresponding critical clause has turned into a unit clause for x. Denote the probability that
Sx(π) is a cut in Tx by Q(Tx, π).

For r ∈ [0, 1], let Rk(r) be the smallest non-negative x that satisfies x = (r+ (1− r)x)k−1

and Rk :=
∫ 1

0 Rk(r)dr. It was shown in [8] that if Tx is a full tree, then

Q(Tx, πU ) ≥ Rk − o(1).

Rk(r) can be understood as follows: Take an infinite (k − 1)-ary tree and mark each node as
“dead” with probability r, except the root. Rk(r) is the probability that this tree contains an
infinite path that starts at the root and contains only “alive” nodes.

We have R3 = 2−2 ln 2 ≈ 0.6137 and R4 ≈ 0.4451. For r ∈ [0, 1
2 ], we have R3(r) =

(
r

1−r

)2

and for r ∈ [ 1
2 , 1], we have R3(r) = 1. As H(r) ≥ r, and by definition of πH and of a cut, it

is obvious that

Q(Tx, πH) ≥ Rk − o(1), (6)

if Tx is a full tree. If Tx is not a full tree, we do not have any good bounds on Q(Tx, πU ).
In [10] it is shown that if Tx is not necessarily a full tree, but a tree in which every leaf not
at depth d is labeled by a defining variable, then

Q(Tx, πH) ≥ γH − o(1), (7)

where

γH =
∫ 1

0
min{H(r)k−1, Rk(r)}dr.

Obviously γH ≤ Rk, which means that the bound (6) for full trees is at least as strong as
the bound (7) for general trees. The H(r)k−1 term corresponds to the tree that consists of a
root where all children are labeled with defining variables and are thus leaves (remember
that there are at most k− 1 children). It takes a small lemma to show that this tree and the
full tree are the worst cases. See [2] for details. The following observation summarizes this:

I Observation 13. If x is a critical variable, then Q(Tx, πH) ≥ Rk−o(1). If x is a noncritical
nondefining variable, then Q(Tx, πH) ≥ γH − o(1).

We want to find a set Γ of placements such that a placement chosen uniformly at random
from Γ behaves more or less like πH .

I Lemma 14 (old version of [8]). Let H be a nice distribution function. If |Dα| ≥
√
n, there

is a set of placements Γ depending on n with the following properties: Let πΓ be the placement
choosen uniformly at random from Γ. Then for any tree T with at most log(n) nodes we have

Q(T, πΓ) ≥ Q(T, πH)− o(1)

and

Pr(πU ∈ Γ) ≥ 2−βH |Dα|−o(n)

with

βH :=
∫ 1

0
h(r) log (h(r)) dr

where h(r) is the derivative of H(r).
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The proof of this lemma is long and complicated, see Sections 4.2 and 4.3 in [2]. The
case |Dα| <

√
n is easy to handle: The probability that all defining variables come at the

beginning is substantial, and we are essentially in the (good) unique case.
Below we will show how to choose a good function H for the case k = 3 and k = 4. To

get an intuition, see Figure 2 for a plot of H for k = 3. With this function, one obtains
γH ≈ 0.6073995502 and βH ≈ 0.8022563838. Together with Lemma 14 and Observation 13,
we conclude that for a critical variable x

Pr[x ∈ forced(α, π)] ≥ Q(Tx, πH)− o(1) ≥ Rk − o(1) ≥ 0.61371,

and for a non-critical non-defining variable x

Pr[x ∈ forced(α, π)] ≥ Q(Tx, πH) ≥ γH − o(1) ≥ 0.6073995502− o(1).

3.2 Choosing a good H

3-SAT. Let now k = 3. We choose H as in [10]: Let θ ∈ [0.5, 1] be a parameter. With some
appropriate parameters a and b > 1, we define H(r) as follows:

Figure 2 H(r) for 3-SAT

H(r) :=
{
r/θ if r ∈ [0, 1− θ)
1− (−a ln(r))b if r ∈ [1− θ, 1]

To determine a and b, we set the constraints

H(1− θ) = R3(1− θ)1/2

(as θ ≥ 1/2, this right-hand side is equal to 1−θ
θ )

and

h(1− θ) = 1/θ.

If these constraints are satisfied, H(r) is a nice
distribution function that is differentiable on [0, 1].
Figure 2 gives a plot of the H(r) we use. Numerical
optimization gives θ ≈ 0.52455825 and as before c∗ ≈ 0.48659459. See Section 4.6 in [2] for
details of the computation. This gives

a ≈ 0.96782885577,

b ≈ 7.19709520894,

βH ≤ 0.8022563838,

γH ≥ 0.6073995502.

This concludes the proof of Lemma 9.

4-SAT. For 4-SAT, we use the H corresponding to the new version of [8]. For some
parameter θ ∈ [ 2

3 , 1], we let H(r) := min{ rθ , 1}. It turns out that the optimum is when
βH = 1− γH . In that case it is easily seen that the bound for PPSZ does not depend on
|Dα|, and hence we do not need Schoening. Numerical optimization gives θ ≈ 0.6803639
and c∗ ≈ 0.63878808. This implies the success probability Ω(1.46928−n), proving Theorem 5.
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4 Conclusion

We have shown how to improve PPSZ by a preprocessing step that guarantees that a
substantial fraction of variables will be critical. With this, we were able to improve the bound
for 3-SAT and 4-SAT from [10]. We have also shown that our approach nicely combines with
the improvement by [5] by giving an even better bound. In 4-SAT, we are already very close
to the unique case. We do not know if a more refined choice of H (similar to [10]), possibly
depending on ∆, allows us to close that gap.

It is interesting to see that we could make use of multiple assignments in the guessing
step before considering just one assignment using the subcube partition.
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